Sliced inverse regression for high-dimensional time series
نویسنده
چکیده
Methods of dimension reduction are very helpful and almost a necessity if we want to analyze high-dimensional time series since otherwise modelling affords many parameters because of interactions at various time-lags. We use a dynamic version of Sliced Inverse Regression (SIR; Li (1991)), which was developed to reduce the dimension of the regressor in regression problems, as an exploratory tool for analyzing multivariate time series. Analyzing each variable individually, we search for those directions, i.e., linear combinations of past and present observations of the other variables which explain most of the variability of the variable considered. This can also provide information on possible nonlinearities. We apply a dynamic version of SIR to multivariate physiological time series observed in intensive care.
منابع مشابه
An investigation of sliced inverse regression with censored data
An Investigation of Sliced Inverse Regression with Censored Data Daniel Riggs August,62010 The complexity of high-dimensional data creates a number of concerns when trying to analyze it. This data often consists of a response or survival time and potentially thousands of predictors. These predictors can be highly correlated, and the sample size is often very small and right censored. Sliced inv...
متن کاملOn Sliced Inverse Regression With High-Dimensional Covariates
Sliced inverse regression is a promising method for the estimation of the central dimension-reduction subspace (CDR space) in semiparametric regression models. It is particularly useful in tackling cases with high-dimensional covariates. In this article we study the asymptotic behavior of the estimate of the CDR space with high-dimensional covariates, that is, when the dimension of the covariat...
متن کاملSufficient Dimension Reduction With Missing Predictors
In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missing observations. Existing SDR methods resort to the complete-case analysis by removing all the sub...
متن کاملProtection Scheme of Power Transformer Based on Time–Frequency Analysis and KSIR-SSVM
The aim of this paper is to extend a hybrid protection plan for Power Transformer (PT) based on MRA-KSIR-SSVM. This paper offers a new scheme for protection of power transformers to distinguish internal faults from inrush currents. Some significant characteristics of differential currents in the real PT operating circumstances are extracted. In this paper, Multi Resolution Analysis (MRA) is use...
متن کاملSliced Inverse Regression for the Identification of Dynamical Systems, Report no. LiTH-ISY-R-3031
The estimation of nonlinear functions can be challenging when the number of independent variables is high. This difficulty may, in certain cases, be reduced by first projecting the independent variables on a lower dimensional subspace before estimating the nonlinearity. In this paper, a statistical nonparametric dimension reduction method called sliced inverse regression is presented and a cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002